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Executive Summary

A control umbilical is an assemblage of different cables and pipes, bound
together into a single unit for robustness and flexibility. An umbilical
design generally comprises a cross-section layout that shows the posi-
tions of the specified components within the construction, along with
inert filler that provides mechanical protection and stability. The posi-
tioning of the components and filler affect the properties of the finished
product and the ease and cost of manufacture.

We have investigated possible methods for automating the design pro-
cess, including how to generate feasible solutions, how to compare the
relative quality of different designs, how to determine how similar two
designs are, and how an automated system could make use of existing
expertise.

All of these elements would contribute to an automated design system
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1 Problem statement

(1.1) A subsea control umbilical is defined as an assemblage of electrical and fibre
optic cables, and fluid conduits bound together for robustness and flexibility.
In offshore oil- and gas-field developments, umbilicals are critical components
for the production of hydrocarbons, providing electrical and hydraulic power,
control and signals to and from the subsea components in the system, along
with a means of supplying injection chemicals for flow assurance purposes or
as a conduit for gas transportation.

(1.2) Technip Umbilicals designs and manufactures bespoke umbilicals to clients’
individual specifications. A design generally comprises a cross-section layout
that shows the positions of the specified components within the construction,
along with inert filler that provides mechanical protection and stability. The
positioning of the components and filler affect the properties of the finished
product and the ease and cost of manufacture. The process of cross-section
design is currently performed manually, using AutoCAD. Figure 1 shows
five different designs for the same set of components, where each design is
optimal in some respect. There is no known solution that is optimal in all
respects.

(1.3) A large amount of judgement is applied to the designs during preparation
and review, based on calculated properties, experience, manufacturing con-
siderations, knowledge of costs, etc., which makes judgement by non-experts
difficult and the design process time-consuming.

Requirement

Based on the requested functional specification, produce an optimised um-
bilical design automatically. The design will achieve required mechanical
properties, primarily strength and linear weight targets, and minimise
• the finished diameter of the umbilical
• manufactured cost
• manufacturing risk

(1.4) An evolution of the system might accommodate learning from feedback, or
learning from previous successful designs, even where those designs did not
have exactly the required properties or components. It is anticipated that
an automated design tool might generate designs outside the usual rules of
thumb applied by human designers, but which are more optimal in some
sense.
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Components:
• 2 x Quad Power Cables

(black quatrefoils)
• 5 x 19.05mm ID Tubes

(magenta circles)
• 3 x 12.7mm ID Tubes

(red circles)
• various fillers, as necessary

(black shading)

(a) smallest diameter and lowest cost

(b) best mechanical protection (c) no contact between metal tubes

(d) no tube covering required (e) most efficient; possible manufacturing
risk

Figure 1: A number of different designs for a single component set. There is no
single optimal solution; each design is optimal in some way, as indicated by the
sub-captions.
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2 Overview of work

(2.1) With such a large group working on the problem, it was possible to split
up into teams to tackle different aspects of it. These different aspects are
described in different sections of this report, as follows.

(2.2) The first challenge is to devise a system that is able automatically to generate
feasible designs for the umbilical. Feasible designs contain the correct com-
ponents, relatively densely packed together into a circular cross-section, with
no components overlapping. For any given list of components to be included
in a single umbilical (other than trivial cases with only a very small number
of components), there is likely to be a very large, indeed possibly infinite,
number of designs. Even if we could automatically generate all possible de-
signs, the amount of time it would take to generate and then evaluate each
of them would far exceed the time available, even with the most powerful
computers. Instead we have concentrated on methods based on the “good
enough, fast enough” principle. Three different solutions to this problem are
described. Section 3 uses mathematical optimisation of a single objective (i.e.
it seeks designs which minimise a single numerical value, calculated from the
design layout). Taking methods developed under the umbrella of Artificial
Intelligence, section 4 describes the use of genetic algorithms to optimise a
single objective (section 4.1) or multiple objectives simultaneously (section
4.2). Section 7 describes a method inspired by the orbits of electrons within
atoms.

(2.3) The fundamental difference between components and filler is that the size
and number of components are fixed, whereas those of filler may vary (subject
to some minimum size). With this in mind, the group approached the overall
design process in two stages: first place the components, and then fill the
gaps. Section 5 describes a method of adding filler to a component design.

(2.4) The component/filler placement methods described in sections 3 and 4 rely
on starting from some random position, usually a set of randomly-generated
designs, that are then combined and/or adjusted to make them better in
some way. Variety in this starting set is key to the search for good designs.
Complete randomness may not be the best option; for example, it may result
in starting designs that are just rotations of the same layout. Section 6 inves-
tigates a method for maximising the variety of the starting set, while section
8 looks at methods for determining how structurally similar two designs are.

(2.5) In order to find good solutions to this problem, we need to consider how to
measure “goodness”. Section 2.1, below, summarises a number of different
considerations in this respect. For many of these the mathematical means of
calculating a value to be optimised is relatively straightforward and various
methods are described elsewhere in the report. However, there are signif-
icant challenges in assessing the mechanical properties of a given design,
particularly since umbilicals must withstand the stresses of different physi-
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cal environments, such as (a) the dynamic compression and bending loads of
deployment from a ship into the sea, (b) the (relatively) static environment
of lying on the sea-bed, and (c) the dynamic bending stresses of connecting
from the sea-bed to some fixed or floating structure. Section 9 investigates
the first of these, looking particularly at the deformation of an umbilical as
it is squeezed; this is a key physical process as the umbilical is gripped whilst
being deployed.

(2.6) Finally, in section 10 there is a discussion about how we might use Technip’s
existing expertise to drive umbilical design, based on their archive of previous
designs and the knowledge of the human designer.

2.1 Some possible optimization options

(2.7) A number of different measures that are to be optimised have been discussed
in the work group. The following list is a starting point, and elements of
this list are discussed in each section of the report. It should be noted that
these automated optimisation systems are only able to optimise values for
which a numerical value can be calculated. A particular challenge would be
to quantify, for example, something like “manufacturing risk”.

• Minimize the overall radius of the final design.

• Minimize the cost of the final design (including manufacturing costs),
perhaps by minimising

– the number of manufacturing passes, where each pass wraps a num-
ber of components into a single super-component for inclusion into
a future pass,

– the overall number of fillers,

– the number of different types of filler, and

– the number of adjacent circular fillers (this is equivalent to mini-
mizing number of fillers with irregular shapes and number of extra
layers imposed on the main components).

• Maximize the mechanical strength of the final design and its safety:

– no touching between some components (e.g., steel tubes),

– more vulnerable components place towards the centre of the design,
and

– homogenize the density in the cross-section of the design.

• Maximize the elastical properties of the final design (for installation and
storage):

– minimize the MBR (Minimal Bending Radius) of the final design.
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• Maximize the geometrical properties of the final design, perhaps resulting
in an easier process of manufacturing, of a more aesthetic design:

– maximize a symmetry of the allocation of the main components
and/or fillers, or

– choose the shape and density of the fillers as similar as possible to
the shape and density of the main components

• Minimize the manufacturing risk.
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3 Generating feasible solutions: part 1

(3.1) Looking at the suggested designs given by Technip, we can see that there
seems to be no limit to the number of positions that the cables can occupy
within the umbilical. Since we can add any number of fillers of any size,
there is not a finite number of cable configurations, so it is not possible to
just check all viable cable configurations one by one. Instead, we need to
allow, mathematically, these cables to be placed anywhere as long as they do
not overlap or break any other given restriction. Naturally this leads us to
formulate the problem as an optimisation problem with continuous variables.

3.1 Describing the problem mathematically

(3.2) Here we translate from English to mathematics the several desirable proper-
ties of an optimised umbilical design.

(3.3) We begin by specifying an Euclidean (x, y) coordinate system, where (0, 0) is
the centre of the umbilical. We will refer to all the possible conduits, cables
and tubes as just cables. For simplicity, say we want the umbilical to contain
two steel cables and two quad cables with radius RS and RQ, respectively.
We describe the position of the centre of the steel cables by XS

1 = (xS1 , y
S
1 )

and XS
2 = (xS2 , y

S
2 ), and the centre of quad cables by XQ

1 = (xQ1 , y
Q
1 ) and

XQ
2 = (xQ2 , y

Q
2 ). See figure 2 for an illustration.

(3.4) We can now translate the desirable features of an umbilical to simple mathe-
matical expressions. Figure 3 shows how the different costs described below
influence the optimised design.

3.1.1 Estimating cost

(3.5) We begin by assuming the cost of fabrication is proportional to the area of
the umbilical1, so that there is an added cost of

CareaR
2, (1)

where R is the radius of the umbilical and Carea is the cost per unit area.

(3.6) In certain situations, it is undesirable for the steel cables to touch. We can
assume that when the steel cables do touch, they wear away more quickly
and this incurs an added long-term cost Csteel. A simple, smooth function
that only adds cost when the steel cables touch is

Csteel f
((

2RS
)2 − ‖XS

1 −XS
2 ‖2
)
, (2)

1The cost of having a two-assembly design is not considered, but could have easily been in-
cluded.
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X1
S

X2
S

X2
Q X1

Q

RS

RQ

R

-2 -1 0 1 2

Figure 2: the position of a cable is described in terms of the vector to its centre and
its radius.

where ‖(x, y) − (w, z)‖ :=
√

(x− w)2 + (y − z)2, f(·) is a sigmoid function
such as f(t) = (1 + e−20t), and we used a power of two so that this cost is
a smooth function of its variables (an important feature in gradient based
nonlinear optimisation).

(3.7) We can also include a design rule of thumb: stiffer cables (i.e. steel cables)
should be well-distributed throughout the umbilical. We can again assume
that a long term cost Cstiff is incurred if the stiffer cables are badly dis-
tributed. Say that steel and quad cable have a stiffness of Ssteel and Squad.
We can use principals of physics such as centre of mass or centre of inertia
(when applying torque to the boundary of the umbilical), but with the stiff-
ness’s Ssteel and Squad instead of the masses. The simplest of these is the
centre of stiffness:

Cstiff‖SsteelXS
1 + SsteelX

S
2 + SquadX

Q
1 + SquadX

Q
2 ‖2. (3)

The above formula gives zero when the centre of stiffness is at the centre of
the umbilical, otherwise a cost is incurred.
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-3 -2 -1 0 1 2 3

(a) Smallest area

-3 -2 -1 0 1 2 3

(b) Balance stiffness

-3 -2 -1 0 1 2 3

(c) Avoid steel touching

Figure 3: Shows how the results of an optimisation method change when adding
extra cost functions. (a) only considers the cost of the area (Carea = 1 and Csteel =
Cstiff = 0); (b) also includes the cost of balancing the stiffness (Carea = Cstiff = 1
and Csteel = 0); (c) further includes the cost of steel cables touching (Carea =
Cstiff = Csteel = 1). Note that due to their lack of radial symmetry these results
can not be manufactured, something which is corrected later and the improved
results presented in section 3.3.

3.1.2 Constraints

(3.8) The cables can neither overlap, nor can they be outside the umbilical casing.
For the cables to not overlap translates to

‖XS
1 −XS

2 ‖2 −
(
2RS

)2 ≥ 0, ‖XS
1 −XQ

1 ‖2 −
(
RS +RQ

)2 ≥ 0,

‖XS
1 −XQ

2 ‖2 −
(
RS +RQ

)2 ≥ 0, ‖XS
2 −XQ

1 ‖2 −
(
RS +RQ

)2 ≥ 0,

‖XS
2 −XQ

2 ‖2 −
(
RS +RQ

)2 ≥ 0, ‖XQ
1 −XQ

2 ‖2 −
(
2RQ

)2 ≥ 0. (4)
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A trick often used in optimisation is to turn a constraint into a cost penal-
isation. For this penalisation to be a smooth function of its variables, we
again used the power of two in the constraint.

(3.9) Forcing the cables to be within the umbilical casing leads to the following
constraints:(

R−RS
)2 − ‖XS

1 ‖2 ≥ 0,
(
R−RS

)2 − ‖XS
2 ‖2 ≥ 0,(

R−RQ
)2 − ‖XQ

1 ‖2 ≥ 0,
(
R−RQ

)2 − ‖XQ
2 ‖2 ≥ 0. (5)

(3.10) For a two-assembly design we need to add another constraint for the com-
ponents added in the second assembly. Let R0 be the radius of the first
assembly, and assume we want to place both our steel and quad cables in
the second assembly process, then

R−R0 − 2RS ≥ 0, R−R0 − 2RQ ≥ 0, (6)

(R0 +RS)2 − ‖XS
1 ‖2 ≤ 0, (R0 +RQ)2 − ‖XQ

1 ‖2 ≤ 0,

(R0 +RS)2 − ‖XS
2 ‖2 ≤ 0, (R0 +RQ)2 − ‖XQ

2 ‖2 ≤ 0. (7)

The first inequality (6) states that each of the remaining cables fit between
the inner and outer layer. The following inequalities (7) stop any of the
remaining cables from overlaping with the inner radius.

3.2 General considerations

(3.11) There are many optimisation methods, packages and programmes available.
Instead of describing one particular approach, we will outline some general
considerations for all gradient based methods. Later, in Section 3.3, we show
some results.

3.2.1 Two assembly process and radial symmetry

(3.12) To actually build any design it needs to possess enough radial symmetry near
the centre; see figure 3 for examples of designs that cannot be built. We can
remedy this by splitting the method into two steps: first choose a small set
of cables (with at least one cable) to go in the centre of the umbilical, then
run the optimisation method just for these cables. For the next step let R0

be the radius of the smallest circle that contains the cables so far. With this
first set of cables fixed, now run the optimisation algorithm for the remain
cables with the added constraints (6) and (7).

(3.13) Splitting the method in two steps guarantees radial symmetry in the centre of
the umbilical. If only one cable is placed in the centre then we can interpret

9
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this as a one-assembly process, whereas if two or more cables are placed in
the centre then the design is a two-assembly process.

3.2.2 Choosing an initial cable configuration

(3.14) Putting all the constraints together can leave little room for the cables to
move and rearrange. It easy for an optimisation method to get stuck in one
particular cable configuration (a local minimum). This is why it is important
to have many different initial values for the method, that should ideally be
well distributed. Then, the method can be run separately for each of these
initial values and compare the results. We achieve this by generating a large
set of random initial cable configurations, and then removing duplicate (or
sufficiently similar) configurations.

(3.15) In the next section we show in more detail how to determine whether two
cable configurations are similar, as this technique is also useful when choosing
between optimised designs.

3.2.3 Measuring similar cable configurations

(3.16) How do we measure if two cable configurations are alike, in the sense that
they would give umbilicals with the same mechanical properties?

(3.17) Let all the positions of the centre of the cables be denoted by X1,X2 . . .XN .
Create a matrix M , where Mij = X i ·Xj and (x, y) · (z, w) := xz + yw.
This way a rotation of all the X i’s will not affect M .

(3.18) Now the order in which we list the cables X1,X2, . . . ,XN , should also
not influence our measure. Note that swapping the order of two cables,
for example swapping X1 with X2, is equivalent to swapping M for PMP
where P is a row-switching matrix with the properties PP = I and detP =
−1. One way to eliminate the influence of the order is to apply several
row-switching matrices until (M11,M22, . . . ,MNN), the diagonal of M , is in
decreasing order. Yet another way is to combine the components of M to
form quantities that are invariant to row-switching operations, such as the
isotropic invariants

S(M ) =
(
tr(M), tr(M ·M), . . . , tr(MN)

)
. (8)

With the above, the matrices M 1 and M 2 of two cable configurations can
be compared by computing the difference ‖S(M 1)− S(M 2)‖.

3.3 Results

(3.19) Here we present the results of a gradient based method implemented in

10
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Mathematica 10, which is run with a large set of random initial cable con-
figurations.

(3.20) To illustrate, we choose the following cables:

- 5 steel cables with radius RS = 10cm and stiffness Ssteel = 10cm−2

- 2 quad cables with radius RQ = 9cm and stiffness Squad = 2cm−2

- 3 optical cables with radius RO = 5cm and stiffness Soptical = 1cm−2

(3.21) In section 3.1.1 we see that we have to choose three cost parameters
Carea, Csteel and Cstiff . We pick two examples

example 1: Carea = 2Cstiff =
1

2
Csteel, (9)

example 2: Carea = Cstiff and Csteel = 0, (10)

We do not give a value for Carea as only the ratio between the costs will effect
the resulting optimal designs.

(3.22) Example 1 means that it is most important that steel cables do not touch and
least important to balance the stiffness; see figure 4 for the results. Example
2 gives equal importance to balancing the stiffness and reducing the area
of the umbilical, while not considering whether the steel cables touch; see
figure 5 for the results.

(3.23) Remember we have not included the cost of having a two-assembly process
(two layers), nor do we consider any complications arising from adding fillers.
The method presented is simply a proof of concept, but could be extended
to include all these considerations that have left out and more.

3.4 Conclusions

(3.24) To summarise, this section of the report shows how to translate several fea-
tures of an optimised umbilical into mathematics. We also proposed that we
can calculate the optimised designs by using nonlinear optimisation methods.
As a proof of concept, we used Mathmatica’s optimisation tools to generate
the optimal designs shown in figures 4 and 5.

(3.25) Both the cost and stiffness parameters used in the method were not known,
such as Carea and Ssteel. To improve the method, these parameters can be
roughly estimated and then the method can search within these estimates to
produce optimised designs.
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-3 -2 -1 0 1 2 3

(a) One layer and cost: 11.9 C−1
area

-3 -2 -1 0 1 2 3

(b) Two layer and cost: 12.9 C−1
area

-3 -2 -1 0 1 2 3

(c) Two layer and cost: 13.1 C−1
area

-3 -2 -1 0 1 2 3

(d) Two layer and cost: 13.1 C−1
area

Figure 4: Shows the optimal designs for the cables specified just above equation (9),
which gives the cost parameters. The large light green circles are the steel cables,
the small purple circles are the optical cables and the mid-sized jade circles are
the quad cables. Note how in general the steel cables avoid touching and are well
distributed in the umbilical (due to the balance of stiffness).
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-3 -2 -1 0 1 2 3

(a) Two layer and cost: 13.3 C−1
area

-3 -2 -1 0 1 2 3

(b) One layer and cost: 13.5 C−1
area

-3 -2 -1 0 1 2 3

(c) One layer and cost: 13.9 C−1
area

-3 -2 -1 0 1 2 3

(d) Two layer and cost: 13.9 C−1
area

Figure 5: Shows the optimal designs for the cables specified just above equation (10),
which gives the cost parameters. The large light green circles are the steel cables,
the small purple circles are the optical cables and the mid-sized jade circles are the
quad cables. Note how in general these umbilicals are more compact than those
given in Figure 4 because steel cables are allowed to touch.
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4 Generating feasible solutions: part 2

(4.1) In this section we describe an alternative way of optimising umbilical design,
using two different genetic algorithms (GA) [4] to evolve potential designs.
A GA mimics the process of natural selection, maintaining a population of
plausible solutions to the problem and then, through an iterative procedure,
combining and mutating these solutions to improve their performance as
measured by some fitness function. The fitness of a potential design (i.e. of
one member of the population) provides a measure of how good the solution
is and hence a means of comparing two potential solutions. The aim of the
GA is thus to achieve the best possible fitness value. In this section, it makes
sense to define a fitness function whose value we wish to minimise, since we
wish to minimise, for example, the radius of the umbilical’s cross-section, so
instead of fitness function we will refer to the more generic objective function.

4.1 Single-objective optimisation

(4.2) Our goal was to consider a set of circles of different, fixed radii, and config-
ure them in a single umbilical in a way that is “good”. We implemented a
multiphase optimisation algorithm to automate the configuring, by formulat-
ing an objective function that expresses design ideas we want to satisfy (for
example circles not overlapping in conjunction with a small bounding circle
radius) and converging to an optimal solution with a genetic algorithm.

(4.3) The objective function was designed to consider (and penalise) the following
configurations:

- circle overlap
- total bounding radius
- steel cables (circles) touching
- a tunable affinity or preference to be placed close to the centre of

the umbilical

It is worth noting that the relative importance of each of these is easily
changed, as well as adding further considerations discussed in the project
outline, most importantly mechanical considerations, if these can be for-
malised prescriptively.

(4.4) Considering the list above, the objective function, to be minimised, is defined
as:

the sum of pairwise overlaps

+ the radius of the bounding circle

+ steel touching penalty (distance within allowed separation)

+ (weighted) distances from centre of the umbilical

where the relative weighting of these four contributions can be adjusted, as
necessary.
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Figure 6: Screenshots of the resulting configurations of packing identically sized
balls, essentially achieving the theoretically optimum designs.

(4.5) We also note some implementation details of the genetic algorithm. We used
a population size of around 2000, and evolved the population through a few
hundred generations. Of course this can be extended with a more careful
implementation and more computing power. The two key features in the
genetic algorithm are the mutations introduced into the population, which
allow us to traverse the search space, and crossovers, which prescribe how to
propagate the population from one generation to the next.

(4.6) At first we considered the standard mutations, swapping the circle centres
in various ways. To allow motion we added random translations (all scaled
to be somewhat invariant to the radius sizes). We also considered more
geometrically rich mutations, such as hops (allowing a circle to reflect its
position in the line connecting the centres of two other, randomly chosen,
circles), plane reflections (randomly choosing a line, and reflecting the centres
of all those circles above the line) and centring around the centre of mass.

(4.7) Some mutations are better than others at different stages. For example,
slightly larger translations are good at the beginning to leave the initial
(random) configuration and make large steps toward converging to feasible
configurations. However towards the end of the evolution when the config-
uration is in a local minimum, we are less interested in large translations
and perform smaller movements to encourage a smaller scale settling. This
annealing proves helpful. In general, the style and size of mutations can be
tailored to be vary with time.

(4.8) The crossover functions used were fairly standard. We used both single-
parent breeding, as well as two-parent, where the children take some centres
from one parent and the rest from another.

(4.9) A useful testing benchmark is the case of identical circles, for which the
optimal packing is known. With no other considerations, our algorithm
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Figure 7: Screenshots of the resulting configurations of two simulations. On the left
we ran a single phase, placing importance on the smaller circles being in the centre,
whilst on the right we achieved a similar result with two phases. The grey shading
shows steel circles that cannot touch.

Figure 8: Screenshots of the resulting configurations of two separate simulations.
On the left we gave more importance to the larger circles being in the centre, whilst
on the right we gave more importance to the smaller circles being in the centre.
The grey shading shows steel circles that cannot touch.

should converge to the optimal packing. See figure 6 for examples.

(4.10) We call the algorithm multiphase because we allow the user to choose sep-
arate phases to run the algorithm. The first phase settles with some con-
figuration around the origin. We then encircle this with a bounding circle.
The next phase configures the circles around, that is, outside the outermost
bounding circle. And we can continue as such for an arbitrary number of
phases. See figure 7.

(4.11) Initial conditions are also important, and may lead to a broader set of final
configurations. In these experiments we simply placed the circles at random
at the start of the evolution, but other ideas are worth considering. For
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example, placing the centres equispaced on a large ring would allow a rich
array of initial configurations, and admits a systematic and discrete way of
enumerating potential initial conditions. Section 6 of this report considers
different methods for generating starting configurations.

(4.12) Ideally, we envisage the algorithm running many times, with many initial
conditions. There were discussions about automatically identifying similar
configurations using methods from graph theory (see section 8), so the out-
put would select only those that were distinct. By running with different
objective functions penalising different things (e.g. mechanical properties,
geometric properties, etc.) it is possible to achieve a variety of potential
configurations. For example, see figure 8.

4.2 Multi-objective optimisation

(4.13) In section 4.1, the objective function combines all the different costs and
penalties into a single, weighted value. The weightings must be specified up
front and a single run of the algorithm searches for the single best design for
that particular selection. The reason for the weightings is that there is no
single umbilical design that is optimal in all senses.

(4.14) An alternative form of GA takes into consideration the fact that different
designs may be optimal in different ways, but that no one design is optimal in
all ways. A common trade-off in two objectives is cost versus quality; cost to
be minimised and quality to be maximised. The multi -objective optimising
GA maintains a population of potential solutions that represent the trade-off
between two or three objectives; more than three is generally referred to as
many-objective optimisation. This trade-off set, usually called the Pareto
set, is the set of potential designs that are better than all the others in the
set in at least one objective, but not in all objectives.

(4.15) The Pareto set output by this type of GA presents the user with a range of
designs, from which they may choose the best according to their particular
requirements, without them having to define the weightings of each objective
in advance. Seeing the form of the Pareto set informs this decision-making
process. An example will make this clearer.

(4.16) Consider designs that must both minimise the radius of the bounding circle
and produce designs that are as symmetrical as possible. For some sets of
components (for example, a single component), there may be a single design
that is optimal in both objectives, but in many cases increasing the symmetry
is likely to expand the bounding circle.

(4.17) The calculation of the radius of the bounding circle is straighforward. The
symmetry measure has been formulated as the distance of the centre of mass
of the components from the centre of the umbilical, and hence smaller values
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Figure 9: A plot of bounding radius versus symmetry (both to be minimised) for
the Pareto set resulting from a single run of the GA. Note the obvious discontinuity
in the centre of the plot, where a very small increase in the radius of the bounding
circle gives rise to a significant improvement in symmetry.

mean more symmetry. Thus both objectives are to be minimised.

(4.18) Figure 9 shows a plot of bounding radius versus symmetry for the Pareto set
resulting from a single run of the GA. There is an obvious discontinuity in the
centre of the plot, where a very small increase in the radius of the bounding
circle gives rise to a significant improvement in symmetry. The decision-
maker can choose which of these points, each of which represents one design,
is most acceptable for a given requirement, with full understanding of the
trade-offs available.

(4.19) Figure 10 shows two example solutions generated by the multi-objective GA.
The one on the left has been selected from the region of the Pareto set that
“prefers” the minimum bounding radius, while that on the right is selected
from the region that “prefers” symmetry.

(4.20) In these examples, the red circles represent steel components. Incorporating
a constraint that these should not be in contact with one another is straight-
forward. Figure 11 shows a design solution that is symmetrical, tightly-
packed (i.e. the bounding circle is small), and the steel components are not
in contact.

4.3 Conclusions

(4.21) During testing of the single-objective GA, a valuable test of its ability
to find optimal solutions was to compare its minimum-radius solutions
for sets of identically-sized components to the mathematically-proven op-
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Figure 10: Two example solutions generated by the multi-objective GA. The one
on the left has been selected from the region of the Pareto set that “prefers” the
minimum bounding radius, while that on the right is selected from the region that
“prefers” symmetry.

Figure 11: An example solution generated by the multi-objective GA, where the
steel components (in red) are not touching.

tima. Wikipedia provides a useful summary of these optima (see https:

//en.wikipedia.org/wiki/Circle_packing_in_a_circle). The GA re-
peatedly found the optimal solutions for problems from 1 to 13 components,
where 13 is the largest number for which the true optimum has been proven.

(4.22) The single-objective GA requires that all the different measures that we
would like to optimise be combined into a single value, requiring the user
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to decide beforehand what the relative importance of each of the measures
is. The multi-objective GA removes this necessity, and evolves a range of
solutions. The result is a trade-off between the different measures, from
which the user may select make an informed selection of their preferred
design.
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5 Filler Placement

(5.1) Once an optimal solution for the placement of all the required components
has been found, it remains to fill the remaining space in the umbilical with
filler material. In practice, lengths of filler material are wound together with
the required components during umbilical manufacture such that the maxi-
mum unfilled gap in the umbilical cross section is less than some prescribed
threshold. These filler components can have any shaped cross section, but of-
ten circular fillers are favoured in the interest of cost. The aim is to meet the
design specification (which may include criteria related to strength, bending
etc.) in some optimal way (e.g. at the least cost). In the following we focus
on meeting the objective of filling some prescribed fraction of surface area
using the fewest number of filling components. Of course, the approach could
be extended to include different, or multiple, objective functions.

5.1 Optimal placement of the fillers

(5.2) In order to solve the filler placement problem we set the following optimisa-
tion problem.

max ϕ,

s.t. ‖Xi −Xj‖ ≥ ri + rj,

‖Xi −Yk‖ ≥ ri + ρk,

‖Xi‖ ≤ R,

ri ≥ rmin,

(11)

where the objective function ϕ is the filling factor defined as

ϕ =
1

R2

(∑
i

r2i +
∑
k

ρ2k

)
. (12)

The variables of the problem are the position of the centre of the fillers Xi

and the radii of the fillers ri. The parameters of the optimisation problem
are the configuration of the cables (required components) given by the centre
of the cables Yk and their radii ρk, a minimum radius of the fillers rmin and
the radius of the external cable R.

(5.3) The first two constraints enforce no overlapping of elements (the first, filler-
filler; the second, cable-filler). The third constraint enforces the fillers to
fit into the umbilical and the fourth constraint enforces the fillers to have a
minimum radius. The optimisation problem was coded in MATLAB using
the non-linear constrained optimisation routine fmincon.

(5.4) It is not known in advance how many fillers will be required to achieve the
prescribed filling factor ϕ, so the algorithm starts with one filler and finds the
optimal configuration. If the filling factor does not reach the set threshold
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the algorithm adds another filler and optimises the result again. This process
continues until one of the stopping criteria is satisfied. This can be either by
achieving the required filling factor, by exceeding the maximum number of
fillers set by the user, or by not finding a feasible solution to start with.

5.1.1 Initial guess

(5.5) The first approach for the initial guess in the optimisation routine was a
random configuration of the fillers. After a few trials it was found that
the outcome was very sensitive to the initial guess and that starting from a
random configuration led to clearly non-optimal solutions most of the time.
To improve the algorithm the approach was changed so that for each number
of fillers N a number of initial guesses were chosen from the feasible region.
The optimisation routine was completed several times and the best solution
was selected. The optimal solution for N fillers was then used to provide an
initial guess for the N + 1 filler problem, with the position of the additional
cable being selected at random. As before, a number of initial guesses for
the random placement were made, and the best was chosen. This process
the repeated until the filling criteria had been met, or the maximum number
of fillers had been placed. It was also found that reducing the radius of the
filler to the minimum radius rmin in the initial condition provided improved
solutions. Reducing the radius prevented a large filler from becoming “stuck”
in a large gap where it may be favourable to place two filler components at
a later stage in the optimisation algorithm.

5.2 Example solution

(5.6) Given an optimal configuration of required components, the algorithm was
used to fill some required threshold. Figure 12 shows a filled two-layer um-
bilical. The required components, shown in blue, are the result of a genetic
algorithm approach, which was filled by the above optimisation routine. The
solution looks remarkably similar to an example umbilical provided to the
study group (see figure 1a), and provides some justification that the algo-
rithm provides solutions that are not only optimal (in the sense of filling a
given space with the fewest number of fillers) but can also be produced by
manufacturing methods currently in use.

5.3 Further work

(5.7) The algorithm outlined above could be extended to include additional ob-
jectives and criteria. For example, during the study group and alternative
algorithm was devised which aimed to fill the cable in such a way that the
centre of mass was as close to the centre of the umbilical as possible. In order
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Figure 12: A filled two-layer umbilical. The required components are depicted as
blue circles, and the filler components are depicted as red circles.

to deal with fillers of arbitrary cross section an example approach might be
to develop an algorithm which detects if there are a large number of circular
fillers in close proximity to one another, and suggests to the user that such
collections of circular fillers may be replaced with a single filler of arbitrary
cross section.
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6 Maximising variety in the starting sets

(6.1) Whichever optimisation scheme is to be applied, the choice of initial guess
is an important consideration. Since the problem is inherently non-convex,
with many local minima present in the solution space, we must search based
on many initial guesses. To well sample the solution space we select ini-
tial guesses at random. However, this can be complemented with heuristic
techniques to seek more preferable choices of initial guess.

(6.2) What must be chosen to prescribe an initial guess is the centre of each cable
within the umbilical. If we suppose that we wish to minimise the radius of
the umbilical then a random initial guess can be given by specifying that the
centres of the cables are independent and identically distributed normally
around the origin. Such an initial guess is likely to include overlapping of
the cables, a constraint which must be made tight when optimising. As an
alternative, we can construct a good feasible initial guess, having no overlap,
using a heuristic argument based on packing the cables together.

(6.3) The basic approach is to add the cables one by one, fitting them into a gap
between two cables. Figure 13 demonstrates this positioning. To start, we
arrange the first two cables so that they are touching, this leaves two gaps
on either side of the point of touching to add a third cable. By keeping track
of the gaps, we continue trying to add cables into the gaps. If the cable will
not fit, we try the next gap, until we find a place it can fit. This process
continues until all cables have been added. We note that the order in which
the cables are added is important for the initial guess constructed.

(6.4) In order to apply this heuristic we are required to find the position a cable
should take to fit into a gap between two cables. Here we relax the assump-
tion that the first two cables are touching to allow for the more general case
of a gap between to nearby cables. This geometric problem can be solved as
follows, aided using quantities shown in Figure 14. Suppose the centres of the
two existing cables are given by X1 and X2 with radii r1 and r2 respectively.

Figure 13: Fitting a new cable (blue) into the gap between two existing cables (red).

24



Automatic Optimised Design of Umbilicals ESGI116

X1

X2

X3

X̂

r1

r3

r2

r3

l

h

Figure 14: The geometry of fitting a new cable (blue) into the gap between two
existing cables (red). The grey dashed cable shows the mirror alternate position
where the new cable might otherwise go when taking the opposite choice of signs
in (19)–(20).

Given a cable of radius r3 to add we wish to find the centre X3 = (x3, y3) of
this cable. The following expressions yield the coordinates of the centre as

a = r2 + r3, (13)

b = r1 + r3, (14)

c =
√

(x2 − x1)2 + (y2 − y1)2, (15)

l =
c2 + b2 − a2

2c
, (16)

h =
√
b2 − l2, (17)

X̂ = X1 +
l

c
(X2 −X1) , (18)

x3 = x̂± h

c
(y2 − y1) , (19)

y3 = ŷ ∓ h

c
(x2 − x1) . (20)

Note that a, b and c are the side lengths of the triangle between the centres of
the cables and that the choice of sign in (19)–(20) yields the two alternative
positions for the cable as shown in Figure 14.
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(6.5) Each time we add a new cable, touching two existing cables, we create four
new gaps, being either side of the two touching points. We can maintain
this list of gaps throughout the procedure ready for trying new cables. To
test if a new cable fits in a gap, say positioned at Xnew, we calculate the
distances from this new centre to all existing cable centres Xi and check that
it is greater than or equal to the radii of the two cables being considered.
That is, for each centre of an existing cable Xi we check that√

(xnew − xi)2 + (ynew − yi)2 ≥ rnew + ri, (21)

where rnew is the radius of the new cable. Note that since we calculate the
distance to the centre of each existing cable we can identify any nearby cables
which, while not touching, may still provide a gap to slot in a further cable.
Hence we can operate within the more general framework shown in Figure
14.

(6.6) Now that we have an understanding of the geometry of placing new cables
between the gaps of existing cables there are two choices to make in con-
structing an initial guess. Firstly, in what order do we add in the cables and,
secondly, in what order do we try the gaps between the existing cables. To
characterise the gaps we define the gap size to be the distance between the
centres of the cables to which the gap belongs, namely c as defined in (15). If
the cables are touching this is simply the sum of the two radii of the cables.

(6.7) To see that the two choices given above are important we give an example
of a bad combination of choices. If we add cables in ascending order of size
(radius) and try gaps in decreasing order of size then we can obtain a long
and slender arrangement of the cables, giving a large bounding radius for
the umbilical. As an example we consider a set of cables having radii 1, 2,
3, . . . 10. Figure 15 plots the resulting arrangement of the cables illustrating
its undesirable characteristics. The bounding radius of this configuration is
30.31.

(6.8) While we could add the cables in a random order and also try gaps randomly
to give a variety of initial guess configurations, a good configuration can
be gained by ordering the cables and gaps both in descending order; the
resulting configuration, using the same set of radii as Figure 15, is given in
Figure 16 and gives a bounding radius of 23.41. In contrast using 100 trials
of a fully randomised version gave an average bounding radius of 27.31 with
the minimum being 24.16, higher than that using the descending orderings.
However, the order of adding the cables appears to be the most important
consideration. If we add them in decreasing order of size but try gaps at
random then in 100 trials the mean bounding radius drops to 25.06. We also
note that in this set of trials the minimum was found to be 22.53 and so
improves the configuration of Figure 16 when only decreasing orderings are
used. Overall, using such randomisation we can gain a set of initial guesses
to input into an optimisation routine.
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Figure 15: A bad arrangement of cables with bounding radius 30.31.

Figure 16: A good arrangement of cables with bounding radius 23.41.

(6.9) We stress that in the heuristic arguments presented above there is no explicit
optimisation involved, only a set of rules which aim to provide a reasonably
good initial guess (or set of initial guesses, if randomisation is included) for
an optimisation routine. However, we should be careful that when using
an optimisation routine we do not allow it only latch onto the best initial
guess and be unable to move away to find better solutions. It is also not
clear that using only the, possibly randomised, heuristics here provides an
adequate sampling of the whole space. More investigation is required to
deduce whether such a ‘good’ set of initial guesses, as might be derived
by the above heuristics, will likely also give a ‘good’ outcome from a given
optimisation routine.
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7 Generating feasible solutions: part 3

(7.1) In order to make an automated system that is able to generate all possible
designs which are in infinite number of combinations of components and
fillers and their shapes, it is essential to categorize the group within an
efficient structure to narrow down the choices which leads to the optimised
one. We use the analogy from the orbits of electrons within an atom to place
components in orbital layers about the centre of the umbilical.

(7.2) The intuition for a combinatorial algorithm for multi-layer cable placement,
based on orbits:

• Introduce orbits where components lie
• Adjust the radii of orbits such that umbilical radius is minimised
• Previous geometric and symmetry constraints continue to hold

Figure 17 shows, on the left, an intial assignment of components to two
different orbits, and, on the right, the shrinking of these orbits to achieve a
design.

7.1 Classification of the main frames

(7.3) The maximum number of orbits is equal to the number of components, i.e. N .
Describing the allocations of the components on the orbits and all possible
orderings of components on the same orbit results in a representative (N +
1)×N matrix for each main frame.

7.2 Example

(7.4) For example consider 3 small tubes, 5 large tubes and 2 cables, i.e. N = 10:

Figure 17: Orbital placement: (left) assign the components to orbits and then
(right) shrink the orbits to squeeze them together.
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categorize their type by its radius. Even if two different types of components
have same radius, categorize them with different ri and rj.

r1

r2

r3

Then place the components in the order one wants on each orbit.

Orbit 1 r1

r1r1

Orbit 2 r2

r2

r3

r2r2
r2

r3

In this example, Orbit 0 is empty and so do Orbit 3− 10. Now we are ready
to write the allocation matrix:

M =



0 0 . . . 0
1 1 1 0 . . . 0
3 2 2 2 3 2 2 0 0 0
0 . . . 0
...

. . .
...

0 . . . 0


where each row represents the orbits and the entries are type of components.
For this example there is no component on Orbit 0. Thus the first row
is empty. There are three kinds of components and all three of first kind
marked as r1 or 1 in matrix entry lie on Orbit 1. Other entries in the first
row are filled with zeros. This continues for all (N + 1) × N entries which
represents the allocation matrix for this main frame.

7.3 Adding an auxiliary frame for a given main frame

(7.5) Optionally we are introducing the additional auxiliary impenetrable orbits
between the existing orbits. Then each impenetrable orbit can be taken as a
complete umbilical and has freedom to have independent assembly processes
for the final design.

(7.6) Then we merge main frames consists only main components and auxiliary
frames consists the main components and fillers) into a final design. With
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the frame we continually scaling distances between orbits and components
on the same orbits as well as rotating the orbits independently and moving
components on the same orbits in the way that their ordering still remains
the same. In this way we ensure that we stay in the same main frame
configuration. This process can be parametrized with the help of some set
of parameters (which can be used later for the multivariate optimization
purposes).

(7.7) Finally, we are enveloping the whole structure with the circle (confining it in
the thermoplastic covering) and inserting the fillers (preferably circular ones)
into a given main frame to produce a final design (a solution) ensuring that
the left-out free space (not filled either with main components or fillers) is
less or equal than some critical value (Sfree ≤ Scrit) which adds the flexibility
of the cord but no displacement of components.

Sfree ≤ Scrit

The space enclosed by three small circles is small enough to satisfies Sfree ≤
Scrit.

Sfree > Scrit

As the size of circles increases, the enclosed space also increases until it is
big enough to insert a given component or needs a filler to fix the position
of circles. Then it violates the condition and Sfree > Scrit.

(7.8) Main purposes of adding filters:

• fixing the component in the places where we want them to be
• giving the design desired mechanical properties, e.g., desired

MBR, degree of overall elasticity, strength, homogeneity of den-
sity/weight in the cross-section, degree of resistance to hydro-
static pressure, etc.
• ensuring some additional symmetry of the solution (in shape,

geometrical distribution of components, etc.)
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(7.9) We begin the design with circular fillers. However, at the very end, the
option to merge the set of adjacent circular fillers into more costly fillers of
irregular shapes or extra layer covering of the main components.

7.4 Uniqueness of solutions

(7.10) Each final design (each solution) can be uniquely represented with the help
of:

• allocation of main components on orbits
• angular ordering of components on the same orbits
• adjacency graph associated with the given main frame.

7.5 Automatic or semi-automatic umbilical design creator

(7.11) An user-friendly automatic or semi-automatic umbilical design creator can
be made by questioning the user on each step to design on each orbit. By
mechanical or design purpose the user can decide first the centre piece: which
cable to place or leave it empty. This design for the centre piece is the
additional classification which will be explained in detail later. Then it moves
to the next orbit to ask which components to place to generate the possible
orders and rotation of allocation of components regarding the symmetry
or more mechanical requirement. In this way the possible combinations of
allocations of components narrows down in order to follow the steps explained
previously.

7.6 Additional classification of centre pieces

(7.12) We can provide some classification of the central designs (the predefined
design of the lowest orbits, i.e., giving an allocation of main components on
the zeroth, first, and maybe second orbits) in order to maximally diversify
the initial conditions of numerical algorithms for optimization process. Not
only this classification will help to categorize from the initial step, it will
help to ensure that the algorithm considers all possible combinations. Define
some conditions for cutting-off options (e.g., Sfree ≤ Scrit). Predefine the final
design by given some packing trends in the arrangement of main components
(e.g., smaller components inside, larger components outside or vice versa;
start with small elements, then place lager ones, and finally again small,
etc.).

(7.13) Here are some examples of the centre pieces.

Case 1: When Orbit is is filled, only one possibility is a component is placed
on Orbit 0.
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Orbit 0

Case 2: In case Orbit 0 is empty, we can place the components as long as
Sfree ≤ Scrit.

Orbit 1 . . .
Sfree > Scrit

The last possible case is to place all given components on Orbit 1. However,
it might violate the condition as indicated.
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8 Assessing the similarity of different solutions

(8.1) As shown in figure 1, designers can come up with multiple, structurally
different designs for the same umbilical. If one design is merely a rotation of
a previous design, this would not be presented as a different option. But it is
much harder for a computer to identify these similarities. Here we will define
an umbilical based on which components are adjacent to each other and use
this to identify umbilical designs which are structurally different. We show
proof of concept and discuss further improvements including: incorporating
distance between components and limiting the number of different structures.

(8.2) The goal of this part of the project was to establish and implement a math-
ematical framework for the classification of umbilical designs in order to be
able to say when two umbilical designs can be considered as the same.

(8.3) Why is it necessary to be able to say that two designs are the same? Given
a set of components that should be contained in an umbilical, we want to
be able to automatically generate and present different possible design so-
lutions that are optimal with respect to different goals. However, if we run
algorithms various times in order to generate a multitude of umbilical de-
signs, many of the solutions will be essentially the same from the point of
view of the geometry of the umbilical. For example, consider the two designs
depicted in figure 18. The design on the right hand side can be obtained from
the one on the left hand side by first flipping the umbilical over a horizontal
axis passing through the centre of the umbilical and then performing a rota-
tion. For us humans it is rather straightforward to see that these designs are
the same because we are very good at detecting symmetry and other geomet-
rical properties. However, it is a priori not clear how a computer programme
that only knows the shapes and positions of the involved components should
be able to tell that these designs do not need to be distinguished. It is algo-
rithmically not possible to check all symmetry operations, all rotations etc.,
this would lead to a combinatorial explosion of the problem. The goal of this
part of the project was thus to find an automated way to determine whether
two designs are the same in order to reduce a multitude of possible optimal
solutions to those which really differ from each other.

(8.4) What industrial advantages does this bring? The algorithms we have sug-
gested in this report for finding optimal designs run multiple times produc-
ing many “optimal” solutions. We then identify which of these meet the
mathematical criteria best. Instead, we can consider all those optimal so-
lutions, use the framework presented in the following to break them down
into a handful of options which are structurally different and present these
designs as possibilities. Then a final design choice, which can depend on
project specific requirements, would be made by a designer. This allows for
flexibility in design properties which vary between umbilical projects. Alter-
natively, other design criteria, which might be computationally more difficult
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Figure 18: Two umbilical designs that should be considered as the same, the only
difference being that the central clutch of thee components plus three fillers has
been rotated with respect to the rest of the design.

to characterise or mathematically harder to quantify, could then be applied
to choose between the remaining designs.

(8.5) What do we mean by saying that two umbilical designs are “the same”? In
the following, saying that two designs can be considered as the same means
that they correspond to the same geometrical set-up and can be obtained
from one another by central or axial symmetry operations, by rotations, or
very small displacements of the components that do not effect the properties
of the umbilical (mechanical properties, production costs, production risks
aso.).

(8.6) What do umbilical designs look like? In an optimal umbilical design, compo-
nents and fillers will lie very close to each other (fillers will always be used to
fill up gaps as soon as they are large enough. If gaps between components are
necessary, e.g., since steel tubes should not be touching, this will be ensured
with the help of fillers or other components). In general, designs are very
compact for various reasons (stability, costs, manufacturing risks etc.) and
every component and filler will be touching at least two other elements of the
umbilical2. This leads us to the conclusion that the geometric set-up of an
umbilical design is highly characterized by the information which elements
are touching which other elements and which type of component-component
and component-filler adjacencies occur.

2For simplicity, we assume that all components and fillers are circular. Incorporating other
filler shapes in this model could however be done without any trouble.
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8.1 Classification of umbilical designs with the help of con-
tact graphs

(8.7) Our main idea: Every umbilical design is associated with its coloured contact
graph—a graph that stores all the relevant information about its geometrical
set-up. An example of such contact graphs can be found in figure 19: once
for the case that only components are considered and once for the case that
both components and fillers are considered. In the following section we will
formalize this notion.

(8.8) Many of the ideas presented in the following are standard graph theoretic
concepts or inspired by such concepts. As a general reference, we refer to
Diestel’s Graph theory [2] that is used as a standard textbook in modern
graph theory.

8.2 Formal definition of contact graphs

(8.9) Let us start with a formal definition of graphs3:

Definition 1 (Graph). A graph is an ordered pair G = (V,E) consisting
of a set V of vertices or nodes together with a set E of edges which are
2-element subsets of V .

(8.10) That is, an edge consists of two distinct vertices and edges are not directed
(there is no difference between the edge connecting vertex v with vertex w
and the edge connecting w with v). Moreover, multiple edges between the
same pair of vertices cannot occur. In the following, we will consider coloured
graphs, i.e., graphs in which every node is given a specific color.

(8.11) We now define a particular type of graph, a so-called contact graph, that we
associate with umbilical designs.

Definition 2 (Definition and construction of the contact graph). Let D
be an umbilical design which is specified by the number of components4 of
different types and their positions in the plane. We construct the contact
graph G(D) corresponding to the design D as follows:

1. We associate a node in the graph to every component of the design.
Depending on the type of the component, nodes are drawn in different
colors (one colour each per type of component).

3In the literature, such graphs are referred to us simple graphs. In the following we will however
only use the term graphs.

4For simplicity, we do not distinguish between components and fillers in this definition; we
consider fillers to be components of the type “filler”. As can be seen in figure 19, including fillers
in the contact graph can be done in a straightforward way.
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Figure 19: An example of an umbilical design (left), the contact graph of its compo-
nents (middle) and the contact graph of both its components and its fillers (right).

2. We connect two nodes with each other by drawing an edge if the corre-
sponding components touch each other in the design.

(8.12) For example, consider the umbilical design depicted on the left hand side of
figure 19. We have three different components: quad cables correspond to
black nodes, large steel tubes to pink nodes and smaller steel tubes to red
nodes. In the center of the design are the three smaller steel tubes and they
are grouped in such a way that every one of the tubes touches the other two.
This configuration is reflected by the triangle of red vertices in the center of
the contact graphs. As shown on the right hand side of the figure, one can
also represent fillers (here, in gray) with the help of nodes and construct the
contact graphs of both components and fillers.

(8.13) Contact graphs are very particular graphs with strong graph theoretic prop-
erties: they are planar. This means that they can be drawn in the plane in
such a way that no edges intersect5 Moreover, contact graphs of both com-
ponents and fillers are always connected which means that there is a path
between every pair of vertices (there are no unreachable vertices).

(8.14) If we want to specify the graph Gm represented in the middle of figure 19 as
in Definition 1, this could for instance be done as follows:

Gm =(V,E),

V = {r1, r2, r3, b1, b2, p1, p2, p3, p4, p5} and

E = {{r1, r2} , {r1, r3} , {r1, b1} , {r2, r3} ,
{r2, b2} , {r2, p2} , {r3, p3} , {r3, p4}} ,

where the labelling of the nodes has been done as represented on the left
hand side of figure 20.

5A simple example of a graph that is not planar is K5, the complete graph on 5 vertices, that
is the graph consisting of 5 vertices in which every vertex is connected to every other vertex.
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(8.15) This representation of graphs with the help of the two sets V and E is not
particularly handy, especially not as a data structure handling contact graphs
in an algorithmic context. Let us therefore present the following compact and
clear representation of (contact) graphs with the use of adjacency matrices.

Definition 3 (Adjacency matrix). Let G = (V,E) be a graph with n vertices
and let us assume that V = {v1, v2, . . . , vn}. Then the adjacency matrix
of G, denoted by A(G) = (ai,j)1≤i,j≤n is the symmetric n × n matrix in
which the entry ai,j is equal to 1 if there is an edge between vi and vj and 0
otherwise.

(8.16) Using the same labelling of vertices as before (see figure 20), we group vertices
by the type of component they represent and obtain the following adjacency
matrix for Gm:

r1 r2 r3 b1 b2 p1 p2 p3 p4 p5
r1 0 1 1 1 0 0 0 0 0 0
r2 1 0 1 0 1 0 1 0 0 0
r3 1 1 0 0 0 0 0 1 1 0
b1 1 0 0 0 0 0 0 0 0 0
b2 0 1 0 0 0 0 0 0 0 0
p1 0 0 0 0 0 0 0 0 0 0
p2 0 1 0 0 0 0 0 0 0 0
p3 0 0 1 0 0 0 0 0 0 0
p4 0 0 1 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0 0 0 0

Note that A(G) is always a symmetric matrix (ai,j = aj,i since there is an
edge between vi and vj if and only if there is an edge between vj and vi) and
that the diagonal elements are always zero (ai,i = 0 since edges always consist
of two distinct vertices; components do not “touch” themselves). Thus we
only need to store n · (n− 1)/2 values in order to fully describe A(G).

(8.17) Now that we have found a way to represent the geometrical set-up of umbil-
ical designs it is time to define when two designs can be considered as the
same. This is quite straightforward: Two umbilical designs are the same if
they have the same contact graph or, to be more precise, if their contact
graphs are isomorphic:

Definition 4 (Isomorphism of (coloured) graphs). Let G = (V,E) and H =
(W,F ) be two graphs. We say that G is isomorphic to H, in symbols
G ' H if there exists a bijection

f : V → W

such that any two vertices u and v of G are adjacent in G if and only if f(u)
and f(v) are adjacent in H. If the graphs G and H are coloured the bijection
f additionally has to satisfy that f(v) has the same color as v for all vertices
v ∈ V .
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Figure 20: Three isomorphic contact graphs.

(8.18) For example, consider the graphs depicted in figure 20: The graph on the left-
hand side is the contact graph of the design depicted on the left hand-side of
figure 18 and the one on the right corresponds to the design on the right-hand
side of the same figure. These two graphs are isomorphic since the function
f that maps ri to Ri, bi to Bi and pi to Pi fulfills all the requirements of
Definition 4. The graph depicted in the middle of figure 20 simply shows an
intermediate step of the bijection: flipping the left-hand graph horizontally
and relabelling according to the bijection or, alternatively, rotating the right-
hand graph by approximately 30 degrees in anti-clockwise direction.

8.3 Possible limitations of this approach and suggestions
how to resolve these

8.3.1 Incorporating distances between components

(8.19) One possible issue with the idea of classifying umbilical designs by identifying
them with their contact graphs is the following. Contact graphs do not record
the actual distances between components, but merely whether components
touch each other not. Consider for example the four umbilical designs D1,
D2, D3 and D4 consisting of one large and four smaller components that are
depicted in figure 21. All four designs have the same contact graph G that is
depicted on the left-hand side of the figure. However, we might not want to
consider all four of these designs as the same—they do not all have the same
amount of symmetry and are very likely not to have the same mechanical
properties. To be more precise, we will most likely want to consider designs
D1 and D4 as the same, but designs D2 and D3 are too different from D1 to
consider them as the same.

(8.20) In the following we will see how this issue could be resolved by introducing
scaled distance matrices and using them instead of adjacency matrices
of contact graphs associated with umbilical designs. Let us however first
observe that a situation as depicted in figure 21 is not likely to occur in a
complete umbilical design consisting of a set of prescribed components and
a multitude of fillers that have been added to increase stability, improve
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Figure 21: The four (partial) designs depicted above all have the same contact
graph G even though we might not want to consider them as equivalent.

mechanical properties and create a circular shape of the design. Indeed,
as remarked earlier, an umbilical design is highly characterized by its com-
pactness and the fact that components and fillers will all be in contact with
at least two other components or fillers. Thus, such sparse contact graphs
with as few edges as the graph G in the example, will most likely only ap-
pear in partial umbilical designs where fillers have not yet been placed or in
intermediate steps of algorithms that generate designs.

Definition 5. Let D be an umbilical design with n components6. Fur-
ther, let x1, . . . , xn be the x-coordinates of the components in the plane, let
y1, . . . , yn be the y-coordinates and r1, . . . , rn the radii of the respective com-
ponents. Then the scaled distance matrix S(D) is the n× n-matrix with
entries si,j defined as follows:

si,j =

√
(xi − xj)2 + (yi − yj)2

ri + rj
for all 1 ≤ i, j ≤ n.

(8.21) Note that the scaling factor 1/(ri + rj) leads to the fact that si,j = 1 if
and only if the i-th and the j-th component are touching each other, i.e.,
the corresponding entry in the adjacency matrix A(G(D)) is also equal to 1.
Moreover, entries on the diagonal will always be equal to 0. All other entries
in the matrix S(D) are larger than 1 and how far away from 1 the value si,j
is indicates how far away the i-th and the j-th component are from touching
each other.

(8.22) The four designs in figure 21 are characterized by the (x, y) coordinates
(rounded to one decimal):

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5)
D1 (0, 0) (3, 0) (0, 3) (−3, 0) (0,−3)
D2 (0, 0) (3, 0) (−1.5, 2.6) (−3, 0) (−1.5,−2.6)
D3 (0, 0) (3, 0) (1.5, 3.6) (−1.5, 2.6) (−3, 0)
D4 (0, 0) (3, 0.2) (0.2, 3) (−3, 0) (−0.2,−3)

6For simplicity, we do not distinguish between fillers and components here. Moreover, we
assume that there are no two different components that are of the same size. Incorporating these
distinctions could be done very easily by considering a coloured version of scaled distance matrices.
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Moreover, it holds that r1 = 2 and ri = 1 for 2 ≤ i ≤ 5. Thus we obtain the
following four scaled distance matrices (entries are rounded to two decimals):

S(D1) =

1 2 3 4 5
1 0 1 1 1 1
2 1 0 2.12 3 2.12
3 1 2.12 0 2.12 3
4 1 3 2.12 0 2.12
5 1 2.12 3 2.12 0

,

S(D2) =

1 2 3 4 5
1 0 1 1 1 1
2 1 0 2.6 3 2.6
3 1 2.6 0 1.5 2.6
4 1 3 1.5 0 1.5
5 1 2.6 2.6 1.5 0

,

S(D3) =

1 2 3 4 5
1 0 1 1 1 1
2 1 0 2.12 3 2.12
3 1 2.12 0 2.12 3
4 1 3 2.12 0 2.12
5 1 2.12 3 2.12 0

and

S(D4) =

1 2 3 4 5
1 0 1 1 1 1
2 1 0 2.6 3 2.6
3 1 2.6 0 1.5 2.6
4 1 3 1.5 0 1.5
5 1 2.6 2.6 1.5 0

(8.23) Using this concept of scaled distance matrices we can now define a metric
on the set of all umbilical designs with identical contact graphs that allows
us to say when two umbilical designs should be considered the same:

Definition 6. Let D and E be two umbilical designs with isomorphic con-
tact graphs and let their respective scaled distance matrices be S(D) = S =
(si,j) and S(E) = T = (ti,j)

7. Moreover, let τ > 0 be a fixed threshold. Then
the distance between D and E is:

d(D,E) = max
i,j

(|si,j − ti,j|)

and D and E are considered as the same if d(E,D) < τ .

7This means that si,j = 1 if and only if ti,j = 1.
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(8.24) For our example, we obtain the following distances:

D1 D2 D3 D4

D1 0 0.62 0.88 0.15
D2 0.62 0 1.1 0.69
D3 0.88 1.1 0 0.74
D4 0.15 0.69 0.74 0

(8.25) So, if one sets the threshold value τ = 0.2 the two designs D1 and D4 are
considered as the same but all other pairs of designs need to be considered
as different.

(8.26) Note that it would be worthwhile investigating other possible definitions of
the distance d(D,E). For instance, one could consider the Frobenius norm
of the matrix (|si,j − ti,j|)i,j. Also note that choosing an appropriate value
for τ will highly depend on the (number of) involved components and the
desired properties of the specific umbilical design.

8.3.2 Understanding graph isomorphism

(8.27) Another issue with this approach–that is perhaps more of a theoretical
nature–is that graph isomorphism is not well understood geometrically. Def-
inition 20 is very clear from a formal graph-theoretical point of view but it
says little about the geometry of isomorphic graphs. To what extent do iso-
morphic graphs look the same? Can it happen that two contact graphs are
isomorphic even though their underlying umbilical designs are geometrically
not the same?

(8.28) In order to tackle this question, it is important to note that contact graphs
are not just arbitrary graphs: they are always connected and planar. There
are two graph-theoretic results that are relevant in order to understand graph
isomorphism for contact graphs:

1. The Circle packing theorem, also known as Koebe-Andreev-Thurston
theorem. The following description is taken from
https://en.wikipedia.org/wiki/Circle packing theorem: “For ev-
ery connected planar graph G there is a circle packing in the plane
whose intersection graph is (isomorphic to) G and this circle packing is
unique up to Möbius transformations and reflections in lines. A circle
packing is a connected collection of circles [. . . ] whose interiors are dis-
joint. The [contact] graph [(also referred to as a coin graph)] of a circle
packing is the graph having a vertex for each circle, and an edge for every
pair of circles that are tangent [i.e. touching each other].”

Thus circle packings are highly related to umbilical designs and there
contact graphs are nothing else than what we defined here a contact
graph.
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c c =

Figure 22: An example of how an umbilical design consisting of two layers (left-hand
side ) could be represented with the help of two contact graphs.

A scientific discussion of this theorem and other related graph theo-
retic statements was given by Sachs [7]. We also refer to the references
therein. A history of circle packing theory that is more accessible to a
non-specialized audience was published in the notices of the AMS [9].

2. Fáry’s theorem [3] states that any planar graph can be drawn without
crossings so that its edges are straight line segments.

It is certainly worthwhile analysing the implications of these two theorems
in order to resolve this question.

8.3.3 Multi-layered designs

(8.29) So far, we have only considered single-layered umbilical designs in this part
of the project. However, optimal designs often involve several layers, i.e., are
assembled in multiple stages and thus extending the classification of designs
with the help of contact graphs to multi-layered designs is necessary. This
could be done in the following way: An inner layer is considered as a vertex
of a special kind (it is itself a graph), and components are connected to this
vertex if they touch the outside border of the inner layer. For an example,
consider the two-layered umbilical design depicted in figure 22 together with
a representation of its contact graph. The central vertex labelled “c” is here a
graph itself that consists of three component-nodes and of three filler-nodes.

8.4 Numerical Implementation

(8.30) We will now demonstrate proof of concept through our numerical scheme
implemented in Matlab using contact graphs to identify structurally different
solutions.

42



Automatic Optimised Design of Umbilicals ESGI116

8.4.1 Numerical Scheme

(8.31) For each umbilical configuration we considered two elements as adjacent if
the gap between them was smaller than εd, i.e., if (x1 − x2)2 + (y1 − y2)2 −
(r1 + r2)

2 < εd. The value εd is non-zero as numerical errors mean adjacent
elements will always be slightly separated.

(8.32) Using this adjacency definition we constructed the adjacency matrix (see
Definition 3) for every umbilical by comparing the centres of every pair of
elements. By swapping rows and columns we then used these matrices to
determine which configurations had isomorphic graphs. It is still an unsolved
problem whether checking graph isomorphism is an NP-complete problem or
if it is solvable in polynomial time. However, contact graphs are always pla-
nar, and there are many algorithms for graph isomorphism of planar graphs
which run in polynomial time. In particular all umbilical designs have < 100
components, which is a relatively small number of graph nodes, so this com-
parison can be done quickly.

(8.33) We examined 200 “optimal” designs obtained from the genetic algorithm
discussed in Section 4.2. We identified those designs that are structurally
different and calculated the proportion of initial conditions which led to
these structures (given to 2 decimal places). Two examples are given in this
report: firstly 5 components of equal radius as displayed in figure 23 and
secondly 9 components with 2 of radius one, 2 of radius two, 3 of radius
three and 2 of radius 4 as shown in figure 24.

8.4.2 Numerical Results

(8.34) The base case of 3 equally sized components was carried out and we identified
that all designs had the same single optimal packing configuration up to
rotation. Similarly the case of one large and five small components (similar
to figure 21) was studied and the different configurations identified.

(8.35) The case of 5 equally sized components (see figure 23) gave rise to four dif-
ferent structures. Either of the first two could be desirable for the umbilical
dependant on other design requirements. The third structure might want
to be considered separately as components are arrayed more evenly. Al-
ternatively it might be desirable to group it with the very similar second
option which can be achieved by allowing one difference in contact graphs.
The fourth structure shows that error checking to ensure solutions have con-
verged is important.

(8.36) The different geometric structures of a more complicated umbilical were con-
sidered in figure 24. Initially, there were too many geometrically different
optimal structures but there are a number of ways to reduce this number.
How this can be done is discussed in the next section. Here in particular
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Figure 23: Geometrical shapes for the optimal packing of 5 equally sized compo-
nents. Each column corresponds to one geometrical configuration. Each row in
order corresponds to the proportion of designs which correspond to this config-
uration to 2dp), the contact graph of this configuration and an example of this
configuration.

Figure 24: Geometrical shapes for the optimal packing of 2 components of radius
one, 2 of radius two, 3 of radius three, and 2 of radius 4. Each column corresponds
to one geometrical configuration. The first row shows the contact graph of this
configuration and an example of this configuration is on the second row. Differences
between contact graphs has been allowed here to reduce the number of cases.

we only considered cases structurally different if there were more than 5
differences in their contact graphs.

8.4.3 Producing a Manageable Number of Configurations

(8.37) For many components, particularly with a wide range of sizes, there are too
many geometrically different optimal configurations. There are a number of
ways to reduce this:
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• Error check optimal solutions to ensure they have converged to a packed
configuration

• Improve the choice for εd. We expect εd should be a function of the radii
of the two components being compared for adjacency.

• Group solutions as structurally the same if there is up to a (small) spec-
ified number of differences in their contact graphs. This was used in
figure 24 to limit the available configurations which otherwise gave most
of the solutions as different. One disadvantage is that this parameter
means some structures aren’t considered. Hence ideally it is small or zero
but should be chosen to balance the number of required output solutions.
This is an easy way to limit the number of configurations while still distin-
guishing those which differ the most. But other filters based on solution
symmetry etc. would be better. We expect this parameter should depend
on the total number of components and the number of different types of
component.

• Filter structures to ignore undesirable structures, such as very non–
symmetric ones.

A detailed parameter study still needs to be carried out to determine the
formulations the above parameters should take for any general umbilical.
These parameters could also be dependent on the desired number of out-
putted structures.

8.5 Conclusions

(8.38) We introduced the concept of contact graphs in order to classify umbili-
cal designs which are structurally equivalent. Numerical implementation in
Matlab allowed us to provide proof of concept. This method adds flexibility
to optimisation criteria by offering a handful of options to choose from. We
suggested further improvements including the use of distance matrices and
parameter analysis.
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9 Mechanical response of the Umbilical

(9.1) An additional constraint on the umbilical design not yet discussed is the
mechanical response. During installation the umbilical is held in high tension
and compressed whilst being laid. There is a design limitation that only
a limited amount of deformation of each component is allowed within the
optimal design. Currently the response under this loading is established
in part through experience of the designers, and then confirmed through
fully three-dimensional numerical finite element models to ensure the require
mechanical properties in the design are met. This is clearly resource intensive
and not compatible with the optimisation methods discussed above, although
of course can still be used to validate the mechanical properties of feasible
designs. As an alternative, the group also considered whether a simpler
analytical approach could offer an insight into the mechanical properties
of the design, perhaps to offer additional constraints in the optimisation
process.

9.1 Linear elastic model

(9.2) The main progress made was considering a linear elastic model of individual
components (either a steel annulus, or solid filler), subjected to arbitrary
external loading (from adjacent components). The ambition is to then com-
bine these individual components to get a measure for the overall behaviour
of the entire design. For simplicity, we neglect the three-dimensional effects
introduced by the helical nature of the real umbilical and restrict atten-
tion to two-dimensional cross-sections of a cylinder. We also consider only
plane-strain, with deformations only occurring in the plane aligned with the
umbilical cross section, with no deformations occurring along the umbilical.
Although umbilicals are subjected to a wide range of bending and stretch-
ing during instillation, it is thought that the response to the squeezing in
the rollers is the most important feature to account for in the design process.
Two articles considering related problems were found. Firstly, article [1] con-
siders the behaviour of a composite layered cylinder, subjected to squeezing
in plane-strain. Secondly, article [10] uses a similar technique to examine a
squeezed thin annular disk. The derivation below draws upon both.

(9.3) For a linearly elastic material in equilibrium, the radial (σrr), hoop (σθθ) and
shear (σrθ) stresses satisfy in polar coordinates (r, θ):

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r
(σrr − σθθ) = 0, (22)

1

r

∂σθθ
∂θ

+
∂σrθ
∂r

+
2

r
σrθ = 0. (23)
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In plane-strain the constitutive equations are given by

σrr =
E

(1 + ν) (1− 2ν)
(νεθθ + (1− ν)εrr), (24)

σrθ =
E

(1 + ν)
εrθ, (25)

σθθ =
E

(1 + ν) (1− 2ν)
(νεrr + (1− ν)εθθ) , (26)

where E is the Young’s modulus and ν is Poisson’s ratio. We write the
radial and tangential displacements as u = u(r, θ) and v = v(r, θ), and use
the usual strain-displacement relations

εrr =
∂u

∂r
, εθθ =

u

r
+

1

r

∂v

∂θ
, εrθ =

1

2

(
1

r

∂u

∂θ
+
∂v

∂r
− v

r

)
. (27)

Combining these expression gives Navier’s equations for electrostatics:

2(1− ν)

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)
+

1− 2ν

r2
∂2u
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1
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∂2v
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+
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r2
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(28)
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∂r∂θ
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∂u

∂θ
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(29)

(9.4) For the two problems considered (a solid disc and an annulus), the boundary
conditions (tractions) on the outer radius r = b are specified as

σrr(b, θ) = −P (θ), σrθ(b, θ) = 0, (30)

where P (θ) represents the external load per unit length. For the problem
considered P will be zero for all θ, except in a small number of regions (which
may be infinitesimally small), where a constant load is applied. To maintain
equilibrium, the integral over θ of the applied loads is zero. Additionally
for the solid disc we require the displacements to be non-singular as r → 0,
whereas for the annulus of inner radius r = a we instead impose σrr(a, θ) =
σrθ(a, θ) = 0.

(9.5) Given that u and v must be periodic, we expand the displacements in the
form of Fourier series. For simplicity we restrict attention to cases where P
can be represented by even functions but the method is readily extendible
to arbitrary load distributions. Writing the displacements in the form

u(r, θ) =
∞∑
n=0

fn(r) cos(nθ), v(r, θ) =
∞∑
n=0

gn(r) sin(nθ), (31)

and writing the imposed load in the form

σrr(b, θ) =
c0
2

+
∞∑
n=1

cn cos(nθ), (32)
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where the cn are the appropriate Fourier coefficients. Substitution into the
governing equations and solving the standard ordinary differential equations
for both f and g we obtain

u(r, θ) = A1
0r +

A2
0

r
+
∞∑
n=1

4∑
j=1

n(λj + 4ν − 3)

2λj(1− ν)(1 + n2α− λ2j)
Ajnr

λj cos(nθ), (33)

v(r, θ) =
∞∑
n=1

4∑
j=1

Ajnr
λj

λj
sin(nθ), (34)

where α = (1− 2ν)(2(1− ν))−1 and λ1 = n+ 1, λ2 = n− 1, λ3 = −n− 1 and
λ4 = −n + 1. The unknown constants Ajn are then fixed by the boundary
conditions. For the symmetric case we consider here we assume u(r, θ) =
u(r, π − θ) and v(r, θ) = −v(r, π − θ), which leaves Ajn = 0 for n odd. For a
solid cylinder, A2

0, A
3
n and A4

n are taken to be zero to ensure the displacements
remains finite. For an annulus all terms are retained.

(9.6) The remaining unknown constants Ajn are determined by imposing the
boundary conditions on σrr and σrθ given by (24), (25) and (30). Substi-
tuting in the expressions for u and v and (32) leaves a simple linear system
to solve for the unknown constants. In figure 25 we show typical solutions
for the solid cylinder case with pinching at two and four locations. In figure
26 we present the the solution for the thin annulus subjected to the same
loading. The imposed loading was of the form

σrr =

{
−P0 for

∣∣θ − π
2
< 0.4

∣∣ and
∣∣θ − 3π

2
< 0.4

∣∣
0 otherwise

(35)

or

σrr =

{
−P0 for

∣∣θ − nπ
2
< 0.2

∣∣ n = 1, 2, 3, 4
0 otherwise

(36)

with P0 constant. Note these results are for arbitrary values of the parame-
ters rather than for specific components, chosen to emphasise the deforma-
tions that can take place.

(9.7) As mentioned above the solution is readily extendible to arbitrary loading.
In principle, it is then possible to consider a combination of touching com-
ponents. There is still a need to resolve the extent of the contact patches be-
tween components (Hertzian contact) under plane-strain but then the above
method could feasibly be extended to consider multicomponent designs. The
whole discussion above limits the study to linear elastic material. In real-
ity, the design criteria allows for some (small) permanent deformation of the
annulus. Thus there is a further plastic problem, originating on the inner
radius, where the yield stress is exceeded.

9.2 Possible alternative approaches

(9.8) An alternative approach to that detailed above would be to exploit the rela-
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Figure 25: Deformation of a solid cylindrical component pinched at two locations
(left) and four locations (right) with the load P as given in the text. The red line
shows the undisturbed shape.
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Figure 26: Deformation of a thin annulus component pinched at two locations (left)
and four locations (right) with the load P as given in the text. The undeformed
shape is also shown. The red line shows the inner radius, the blue the outer radius.
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tive thinness of the steel pipes to describe the behaviour of the annular case
using a nonlinear beam. Describing the deformation of the annulus using the
arc-length s and angle Θ(s) between the centreline and x-axis. Following the
derivation in [5], we find the Euler-Bernoulli beam equation

EI
d2Θ

ds2
+N0 cos Θ− T0 sin Θ = 0. (37)

For a finite beam N0 and T0 are the normal and tangential forces applied
at each end. In the current cylindrical case, N0 and T0 must be chosen to
ensure Θ is periodic. Additionally N will include some source terms (perhaps
delta-functions for simplicity) to model the pinching between the rollers. If
the tube was just an arc of a circle, and T was prescribed at each end, then
we would have a classical buckling problem, but now we will be interested
in reaching the yield stress for a tube that is becoming oval in shape. For
small enough displacements, it is proposed that an array of nearly touching
tubes could be modelled as a network of springs whose moduli would come
out of a linearization of (37).

(9.9) The other possible approach considered was to attempt an homogenisation.
Given the multi-component nature of the more complex umbilical design, it
was felt that by considering averaged mechanical properties across the whole
device, we could achieve a simplified problem, more compatible with the op-
timisation routine. Following the derivation for a 2D Cartesian geometry
given in reference [5], some progress was made at extending this to a Carte-
sian array of circular components. The outline approach is to consider a
single component, assumed embedded in a large array of components, under
the assumption that although mechanical properties vary considerable over
a local length coordinate, they only change gradually over a longer length
scale. By adopting a multiple scales approach, the solution in the longer
length scale can be found in terms of uniform properties homogenised over
the local length scale. This approach showed some promise, although the
contact between components still needs to be addressed as in section 9.1.
The extension from a 2D infinite periodic array into the cylindrical geome-
try seen here does not seem a trivial task however.
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10 Learning from the experts

(10.1) So far we have concentrated on quantifying the known objectives of the
problem so that the automated systems are able to determine the quality of
a given design. While some objectives, such as the size of the bounding circle,
are easy to measure, others are less clear-cut, and there remain a number
of objectives for which quantification is a significant challenge, for example,
manufacturing risk.

(10.2) Technip has two sources of design expertise: an archive containing several
years’ worth of successful designs, and a human design expert. In this sec-
tion we consider how these two different sources might be used to aid the
automated design process.

10.1 Learning from the archive

(10.3) Over the last 15 years or so, Technip has archived several hundred successful
umbilical designs. Some of them were manufactured; the remainder are in-
termediate designs leading to a final manufacture, though no link is recorded
between them. Altogether, this represents a set of good designs from which
we may be able to measure how good a given computer-generated design is
without having to fully understand and measure individual objectives. We
can consider this as a statistical classification problem: given a potential
design, how likely is it that it is a good one?

(10.4) Usually such a system is trained by giving it a wide range of examples, cover-
ing both good and bad designs, from which it learns to extract or identify fea-
tures that differentiate between the two classes. It can then extract/identify
the same set of features from a previously unseen example and use them to
predict which class the example comes from. In many cases, rather than just
assigning it a class, the system provides a probability of membership of each
class, e.g. “example X is 90% likely to be good design”, from which the user
may determine some measure of certainty.

(10.5) In the case of the Technip archive we only have good design examples. This
is very like the problem of assessing social media (e.g. Facebook) web pages
on the basis of whether or not they have been “liked”. A “like” may imply
that a user considers the page to be good in some way (a positive example),
but a lack of a “like” (an unlabelled example) does not imply that they
consider the page to be bad; they may just not have seen it. So there is
a body of literature investigating methods of classifying potential solutions
into positive and negative, based only on the experience provided by positive
examples. One-class [6], or PU (Positive-Unlabelled) (for example, [11])
learning algorithms work from a set of positive examples, augmented by a
set of unlabelled examples that may be randomly generated.
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(10.6) In order to train a classification model we need to extract the same set of
design features from each example. The umbilical design archive records the
following items about each design:

- a parts list,
- the physical properties of each of the parts,
- an AutoCAD design file, from which the position of each part and

the shape and position of each filler can be extracted,
- the date of the design,
- the depth of water for which the design was made,
- whether the design was manufactured or not,
- whether the design was for installation in a dynamic or a static

environment, and
- for a small selection of designs only (those that are sufficiently novel),

results of full technical testing.

Within this set of good designs we might also suggest that newer designs are
better than older ones, and manufactured designs are better than those that
were not manufactured.

(10.7) Given that each design is bespoke, it is highly unlikely that a new design will
be an exact copy of an existing one. Since they are likely to contain different
numbers and types of parts and have different mechanical requirements, we
must probably rely on features that describe each design as a whole rather
than its individual parts. Examples of such features are: the radius of the
finished product, its centre of mass, the number of components, the average
density along a radius, and the dynamic/static environment classification.

10.2 Learning from the human expert

(10.8) The other source of significant design expertise is, of course, the human
designer. This designer is able to intuitively assess a concept as complex
as “manufacturing risk” without having to enumerate or measure all the
different contributions to this risk. It is this lack of quantification that makes
it hard to design an algorithm that can optimise it.

(10.9) Consider one of the algorithms required for self-driving cars: selecting an
appropriate speed. “Stanley” was a standard road vehicle (a VW Touareg),
altered so that it could drive autonomously or be driven by a human. It
took part in the 2005 DARPA Grand Challenge race, which required it to
drive a cross-country course over many different types and qualities of road
surface. How do you design an algorithm that can select the fastest possible,
safe speed for any given road surface and set of environmental conditions?
Stanley’s designers opted to learn by observation (see [8, section 2.4.3]); the
vehicle was human-driven over many miles and the algorithms learned how to
extract information from which they could make their speed decisions. The
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result was that Stanley famously won the race, and has laid the groundwork
fo the current work on autonomous vehicle design.

(10.10)So, how do we use the human to drive the design process in some similar
way? Given two different designs, the designer is able to state a preference
for one or other of them, and we might use this preference within the design
algorithm. Incorporating the human’s opinion has three advantages: (a) it
removes the need to quantify something that might be unquantifiable, (b) it
improves the optimisation of the umbilical designs, and (c) it, in effect, pro-
vides a new archive containing “preference” data. The latter could be used
to drive a future version of the optimisation algorithm.
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11 Conclusions

(11.1) Given that there are likely to be too many potential solutions to a given um-
bilical design problem to find the overall best design (the global optimum)
within an accep[table time-frame, we have investigated methods for gener-
ating feasible designs that are as good as possible (one of a number of local
optima) given the time constraint.

(11.2) We have shown a variety of methods for generating feasible designs that
are optimum in some way, while repecting constraints such as the fact that
the umbilical components are solid, physical things that cannot overlap. A
subsequent optimisation step has been shown to add appropriate circular
fillers to these designs.

(11.3) We have considered a number of measures for comparing the relative qual-
ities of different feasible designs, including the size of the bounding circle,
symmetry, and the preference for certain types of components to be closer to
the centre of the umbilical. In general, due to the time constraint imposed
by the one-week work-group, these are relatively simple, geometric measures.
A more complete solution would need to evaluate the physical propertis of
a design. In this area we have investigated the mechanical response of an
umbilical as it is subjected to stretching and compression during the process
of deployment.

(11.4) It is highly beneficial to be able to assess how similar two designs are, and for
some of the algorithms, to be able to generate a set of random-ish starting
designs that are as dissimilar as possible. A good range of of desgns improves
the chances of finding the global optimum solution, or at least a better local
optimum.

(11.5) We have suggested ways in which the expertise available within Technip
could be used to drive or improve the design process, either by using their
design archive, or by including the human designer in the process.

(11.6) All of these elements would feature in a full design system. The system would
take in the customer’s specification. Using a range of different measures
that can be calculated from a plausible design (including its mechanical
properties) and the design archive, the system would generate pairs of designs
that it considers to be “good” and present these to the human designer who
would specify which of the pair is the preferred option. This preference is
used by the system to provide an improved pair for the human to comment
on. There would be several iterations of system-human interaction, until the
human is satisfied with the quality. A separate process would try and learn
from the pair-preferences what features of a design leads to improved human
preference, and this would then be fed back into the design system.
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